Discrete unified gas-kinetic scheme for the conservative Allen-Cahn equation

Phys Rev E. 2022 Apr;105(4-2):045317. doi: 10.1103/PhysRevE.105.045317.

Abstract

In this paper, two discrete unified gas-kinetic scheme (DUGKS) methods with piecewise-parabolic flux reconstruction are presented for the conservative Allen-Cahn equation (CACE). One includes a temporal derivative of the order parameter in the force term while the other does not include temporal derivative in the force term but results in a modified CACE with additional terms. In the context of DUGKS, the continuum equations recovered from the piecewise-linear and piecewise-parabolic reconstructions for the fluxes at cell faces are subsequently derived. It is proved that the resulting equation with the piecewise-linear reconstruction is a first-order approximation to the discrete velocity kinetic equation due to the presence of the force term and the nonconservation property of the momentum of the collision model. To guarantee second-order accuracy of DUGKS, the piecewise-parabolic reconstruction for numerical flux is proposed. To validate the accuracy of the present DUGKS with the proposed flux evaluation, several benchmark problems, including the diagonal translation of a circular interface, the rotation of a Zalesak disk and the deformation of a circular interface, have been simulated. Numerical results show that the accuracy of both proposed DUGKS methods is almost comparable and improved compared with the DUGKS with linear flux reconstruction scheme.