Dynamic Spectrum Allocation Using Multi-Source Context Information in OpenRAN Networks

Sensors (Basel). 2022 May 5;22(9):3515. doi: 10.3390/s22093515.

Abstract

Bearing in mind the stringent problem of limited and inefficiently used radio resources, a multi-source mechanism for the dynamic adjustment of occupied frequency bands is proposed. Instead of relying only on radio-related information, the system that collects data from various sources is discussed. Mainly, using the ubiquitous sources of information about the presence of users (such as city monitoring), it is possible to identify areas that have high or low expected traffic with high probabilities. Consequently, in low-traffic areas, it is not necessary to allocate all available spectrum resources while maintaining the quality of service. This leads to the improved spectral efficiency of the network. As the level of trust in certain information sources may differ among various operators, we propose to implement such functionality in the form of an application. Our contribution is a proposal for an algorithm that limits the use of radio resources through fuzzy and soft connections of multiple sources of contextual information. The simulation results presented in this paper show that it is possible to reduce the spectrum used with a slight and simultaneous reduction in user bitrate, which increases the spectral efficiency of the entire system. Hence, following the concept of an open radio access network, various policies for information merging may be specified.

Keywords: context information; dynamic spectrum sharing; open radio access network; radio service maps.