Digital PCR (dPCR) is built on partitioning reagent to the extent that single template molecules are amplified and visualized individually, whereby offers higher precision and other better indicators than the former PCR techniques. Accordingly, dPCR is particular suited for precision medicine applications that require accurate molecular characterization with high sensitivity. This review aims to summarize different applications of dPCR in precision medicine. The state-of-the-art progress of dPCR technique is first introduced, including novel prototype machines and dPCR-integrated biochips. Then the clinical applications based on dPCR technique are briefly described, for instance, detecting biomarkers from tissues and various biopsies components including cell free DNA, circulating tumor cells, extracellular vesicles, and proteins. These emerging dPCR applications have been accepted as auxiliary diagnostic methods in various areas like oncology, infectious disease, and the like. Meanwhile, a usage overview is provided, focusing on successful clinical pilot studies that dPCR is utilized to improve the performances of rare event detection, fine resolution of gene expression analysis, and multiplexing. Finally, some implications and challenges in future research concerning dPCR technique are also discussed.
Keywords: Cancer therapy; Diagnostic; Digital PCR; Infectious disease; Microfluidics; Nucleic acids detection; Precision medicine.
Copyright © 2022 Elsevier B.V. All rights reserved.