scCloudMine: A cloud-based app for visualization, comparison, and exploration of single-cell transcriptomic data

Plant Commun. 2022 Jan 22;100302. doi: 10.1016/j.xplc.2022.100302. Online ahead of print.

Abstract

scCloudMine is a cloud-based application for visualization, comparison, and exploration of single-cell transcriptome data. It does not require an on-site, high-power computing server, installation, or associated expertise and expense. Users upload their own or publicly available scRNA-seq datasets after pre-processing for visualization using a web browser. The data can be viewed in two color modes-Cluster, representing cell identity, and Values, showing levels of expression-and data can be queried using keywords or gene identification number(s). Using the app to compare studies, we determined that some genes frequently used as cell-type markers are in fact study specific. The apparent cell-specific expression of PHO1;H3 differed between GFP-tagging and scRNA-seq studies. Some phosphate transporter genes were induced by protoplasting, but they retained cell specificity, suggesting that cell-specific responses to stress (i.e., protoplasting) can occur. Examination of the cell specificity of hormone response genes revealed that 132 hormone-responsive genes display restricted expression and that the jasmonate response gene TIFY8 is expressed in endodermal cells, in contrast to previous reports. It also appears that JAZ repressors have cell-type-specific functions. These features identified using scCloudMine highlight the need for resources to enable biological researchers to compare their datasets of interest under a variety of parameters. scCloudMine enables researchers to form new hypotheses and perform comparative studies and allows for the easy re-use of data from this emerging technology by a wide variety of users who may not have access or funding for high-performance on-site computing and support.

Keywords: RNA sequencing; comparison; discovery; single cell; visualization.