Signature of Au as a Halogen

J Phys Chem Lett. 2022 Jun 2;13(21):4721-4728. doi: 10.1021/acs.jpclett.2c00910. Epub 2022 May 24.

Abstract

Gold, although chemically inert in its bulk state, is reactive at the nanoscale and, in small clusters, even behaves like a hydrogen atom. Using a photoelectron spectroscopy experiment and first-principles theory, we show that Au also behaves like a halogen in small clusters. This is evident not only in strong resemblance between the photoelectron spectra of Au2F- and AuF2- but also in Au exhibiting one of the signature properties of halogens, its ability to form superhalogens with electron affinities higher than that of any halogen atom. For example, the electron affinity (EA) of Au2F- is 4.17 eV, while AuF2-, a known superhalogen, has an EA of 4.47 eV. Of particular interest is Au2F2, which, in spite of being a closed-shell system, is a pseudohalogen with an EA of 3.3 ± 0.1 eV. Here, one of the Au atoms behaves like a halogen, making Au2F2 mimic the property of AuF3.