New Evidence of Central Nervous System Damage in Diabetes: Impairment of Fine Visual Discrimination

Diabetes. 2022 Aug 1;71(8):1772-1784. doi: 10.2337/db21-0715.

Abstract

Diabetes can damage both the peripheral sensory organs, causing retinopathy, and the central visual system, leading to contrast sensitivity and impaired color vision in patients without retinopathy. Orientation discrimination is important for shape recognition by the visual system. Our psychophysical findings in this study show diminished orientation discrimination in patients with diabetes without retinopathy. To reveal the underlying mechanism, we established a diabetic mouse model and recorded in vivo electrophysiological data in the dorsal lateral geniculate nucleus (dLGN) and primary visual cortex (V1). Reduced orientation selectivity was observed in both individual and populations of neurons in V1 and dLGN, which increased in severity with disease duration. This diabetes-associated neuronal dysfunction appeared earlier in the V1 than dLGN. Additionally, neuronal activity and signal-to-noise ratio are reduced in V1 neurons of diabetic mice, leading to a decreased capacity for information processing by V1 neurons. Notably, the V1 in diabetic mice exhibits reduced excitatory neuronal activity and lower levels of phosphorylated mammalian target of rapamycin (mTOR). Our findings show that altered responses of both populations of and single V1 neurons may impair fine vision, thus expanding our understanding of the underlying causes of diabetes-related impairment of the central nervous system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diabetes Mellitus, Experimental*
  • Geniculate Bodies / physiology
  • Mammals
  • Mice
  • Retinal Diseases*
  • Visual Cortex* / physiology
  • Visual Perception / physiology

Associated data

  • figshare/10.2337/figshare.19807627