Characterization of Macular Structural and Microvascular Changes in Thalamic Infarction Patients: A Swept-Source Optical Coherence Tomography-Angiography Study

Brain Sci. 2022 Apr 20;12(5):518. doi: 10.3390/brainsci12050518.

Abstract

Background: The retina and brain share similar neuronal and microvascular features. We aimed to investigate the retinal thickness and microvasculature in patients with thalamic infarcts compared with control participants. Material and methods: Swept-source optical coherence tomography (SS-OCT) was used to image the macular thickness (retinal nerve fiber layer, RNFL; ganglion cell-inner plexiform layer, GCIP), while OCT angiography was used to image the microvasculature (superficial vascular plexus, SVP; intermediate capillary plexus, ICP; deep capillary plexus, DCP). Inbuilt software was used to measure the macular thickness (µm) and microvascular density (%). Lesion volumes were quantitively assessed based on structural magnetic resonance images. Results: A total of 35 patients with unilateral thalamic infarction and 31 age−sex-matched controls were enrolled. Compared with control participants, thalamic infarction patients showed a significantly thinner thickness of RNFL (p < 0.01) and GCIP (p = 0.02), and a lower density of SVP (p = 0.001) and ICP (p = 0.022). In the group of patients, ipsilateral eyes showed significant reductions in SVP (p = 0.033), RNFL (p = 0.01) and GCIP (p = 0.043). When divided into three groups based on disease duration (<1 month, 1−6 months, and >6 months), no significant differences were found among these groups. After adjusting for confounders, SVP, ICP, DCP, RNFL, and GCIP were significantly correlated with lesion volume in patients. Conclusions: Thalamic infarction patients showed significant macular structure and microvasculature changes. Lesion size was significantly correlated with these alterations. These findings may be useful for further research into the clinical utility of retinal imaging in stroke patients, especially those with damage to the visual pathway.

Keywords: SS-OCT/OCTA; ischemic stroke; macula; microvasculature; thalamic infarction.