Radiomics in Early Lung Cancer Diagnosis: From Diagnosis to Clinical Decision Support and Education
- PMID: 35626220
- PMCID: PMC9139351
- DOI: 10.3390/diagnostics12051064
Radiomics in Early Lung Cancer Diagnosis: From Diagnosis to Clinical Decision Support and Education
Abstract
Lung cancer is the most frequent cause of cancer-related death around the world. With the recent introduction of low-dose lung computed tomography for lung cancer screening, there has been an increasing number of smoking- and non-smoking-related lung cancer cases worldwide that are manifesting with subsolid nodules, especially in Asian populations. However, the pros and cons of lung cancer screening also follow the implementation of lung cancer screening programs. Here, we review the literature related to radiomics for early lung cancer diagnosis. There are four main radiomics applications: the classification of lung nodules as being malignant/benign; determining the degree of invasiveness of the lung adenocarcinoma; histopathologic subtyping; and prognostication in lung cancer prediction models. In conclusion, radiomics offers great potential to improve diagnosis and personalized risk stratification in early lung cancer diagnosis through patient-doctor cooperation and shared decision making.
Keywords: ground-glass nodules; lung cancer screening; overdiagnosis; radiomics; subsolid nodules.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
Predicting malignant potential of subsolid nodules: can radiomics preempt longitudinal follow up CT?Cancer Imaging. 2019 Jun 10;19(1):36. doi: 10.1186/s40644-019-0223-7. Cancer Imaging. 2019. PMID: 31182167 Free PMC article.
-
External validation of radiomics-based predictive models in low-dose CT screening for early lung cancer diagnosis.Med Phys. 2020 Sep;47(9):4125-4136. doi: 10.1002/mp.14308. Epub 2020 Jun 23. Med Phys. 2020. PMID: 32488865 Free PMC article.
-
Joint use of the radiomics method and frozen sections should be considered in the prediction of the final classification of peripheral lung adenocarcinoma manifesting as ground-glass nodules.Lung Cancer. 2020 Jan;139:103-110. doi: 10.1016/j.lungcan.2019.10.031. Epub 2019 Nov 15. Lung Cancer. 2020. PMID: 31760351 Clinical Trial.
-
Do we need to see to believe?-radiomics for lung nodule classification and lung cancer risk stratification.J Thorac Dis. 2020 Jun;12(6):3303-3316. doi: 10.21037/jtd.2020.03.105. J Thorac Dis. 2020. PMID: 32642254 Free PMC article. Review.
-
Managing Persistent Subsolid Nodules in Lung Cancer: Education, Decision Making, and Impact of Interval Growth Patterns.Diagnostics (Basel). 2023 Aug 14;13(16):2674. doi: 10.3390/diagnostics13162674. Diagnostics (Basel). 2023. PMID: 37627933 Free PMC article. Review.
Cited by
-
CT-based radiomics for predicting Ki-67 expression in lung cancer: a systematic review and meta-analysis.Front Oncol. 2024 Feb 7;14:1329801. doi: 10.3389/fonc.2024.1329801. eCollection 2024. Front Oncol. 2024. PMID: 38384802 Free PMC article.
-
An Informative Review of Radiomics Studies on Cancer Imaging: The Main Findings, Challenges and Limitations of the Methodologies.Curr Oncol. 2024 Jan 10;31(1):403-424. doi: 10.3390/curroncol31010027. Curr Oncol. 2024. PMID: 38248112 Free PMC article. Review.
-
Assessment of interobserver concordance in radiomic tools for lung nodule classification, with a focus on BRODERS and SILA.Sci Rep. 2023 Dec 8;13(1):21725. doi: 10.1038/s41598-023-48567-7. Sci Rep. 2023. PMID: 38066214 Free PMC article.
-
Artificial Intelligence in Lung Cancer Screening: The Future Is Now.Cancers (Basel). 2023 Aug 30;15(17):4344. doi: 10.3390/cancers15174344. Cancers (Basel). 2023. PMID: 37686619 Free PMC article. Review.
-
Baseline whole-lung CT features deriving from deep learning and radiomics: prediction of benign and malignant pulmonary ground-glass nodules.Front Oncol. 2023 Aug 17;13:1255007. doi: 10.3389/fonc.2023.1255007. eCollection 2023. Front Oncol. 2023. PMID: 37664069 Free PMC article.
References
-
- National Lung Screening Trial Research Team. Aberle D.R., Berg C.D., Black W.C., Clapp J.D., Fagerstrom R.M., Gareen I.F., Gatsonis C., Marcus P.M., Sicks J.D. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N. Engl. J. Med. 2011;365:395–409. doi: 10.1056/NEJMoa1102873. - DOI - PMC - PubMed
-
- de Koning H.J., van der Aalst C.M., de Jong P.A., Scholten E.T., Nackaerts K., Heuvelmans M.A., Lammers J.-W.J., Weenink C., Yousaf-Khan U., Horeweg N., et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020;382:503–513. doi: 10.1056/NEJMoa1911793. - DOI - PubMed
-
- Wu F.Z., Huang Y.L., Wu C.C., Tang E.K., Chen C.S., Mar G.Y., Yen Y., Wu M.T. Assessment of Selection Criteria for Low-Dose Lung Screening CT Among Asian Ethnic Groups in Taiwan: From Mass Screening to Specific Risk-Based Screening for Non-Smoker Lung Cancer. Clin. Lung Cancer. 2016;17:e45–e56. doi: 10.1016/j.cllc.2016.03.004. - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous
