Microencapsulation of Flaxseed Oil by Lentil Protein Isolate-κ-Carrageenan and -ι-Carrageenan Based Wall Materials through Spray and Freeze Drying

Molecules. 2022 May 17;27(10):3195. doi: 10.3390/molecules27103195.

Abstract

Lentil protein isolate (LPI)-κ-carrageenan (κ-C) and -ι-carrageenan (ι-C) based microcapsules were prepared through spray-drying and freeze-drying to encapsulate flaxseed oil in order to reach final oil levels of 20% and 30%. Characteristics of the corresponding emulsions and their dried microcapsules were determined. For emulsion properties, all LPI-κ-C and LPI-ι-C emulsions remained 100% stable after 48 h, while the LPI emulsions destabilized quickly (p < 0.05) after homogenization mainly due to low emulsion viscosity. For spray-dried microcapsules, the highest yield was attributed to LPI-ι-C with 20% oil, followed by LPI-κ-C 20% and LPI-ι-C 30% (p < 0.05). Flaxseed oil was oxidized more significantly among the spray-dried capsules compared to untreated oil (p < 0.05) due to the effect of heat. Flaxseed oil was more stable in all the freeze-dried capsules and showed significantly lower oil oxidation than the untreated oil after 8 weeks of storage (p < 0.05). As for in vitro oil release profile, a higher amount of oil was released for LPI-κ-C powders under simulated gastric fluid (SGF), while more oil was released for LPI-ι-C powders under simulated gastric fluid and simulated intestinal fluid (SGF + SIF) regardless of drying method and oil content. This study enhanced the emulsion stability by applying carrageenan to LPI and showed the potential to make plant-based microcapsules to deliver omega-3 oils.

Keywords: emulsification; freeze drying; microencapsulation; omega-3 oil; plant protein; polysaccharide; spray drying.

MeSH terms

  • Capsules
  • Carrageenan
  • Emulsions
  • Fatty Acids, Omega-3*
  • Freeze Drying
  • Lens Plant*
  • Linseed Oil
  • Particle Size
  • Powders

Substances

  • Capsules
  • Emulsions
  • Fatty Acids, Omega-3
  • Powders
  • Linseed Oil
  • Carrageenan