Performance of Pyrethroid-Neonicotinoid Mixture Formulations Against Field-Collected Strains of the Tropical Bed Bug (Hemiptera: Cimicidae) on Different Substrates

J Econ Entomol. 2023 Feb 10;116(1):29-39. doi: 10.1093/jee/toac068.


The residual performance of two pyrethroid-neonicotinoid mixture formulations: Temprid SC (10.5% beta-cyfluthrin and 21% imidacloprid) and Tandem (3.5% lambda-cyhalothrin and 11.6% thiamethoxam) on two substrates (glass and filter paper) against eight pyrethroid-resistant strains (BM-MY, BP-MY, CH-MY, GL-MY, KL-MY, SAJ-MY, TT-MY, and QLD-AU) of the tropical bed bug, Cimex hemipterus (F.) (Hemiptera: Cimicidae) collected from Malaysia, and Australia were evaluated. The aging effect of treatment residues on glass was also investigated. A susceptible C. lectularius L. strain (Monheim) was used for comparison. Temprid SC showed varying levels of performance against all C. hemipterus strains: TT-MY (PR50 = 6.5-fold, high performance), BM-MY, GL-MY, SAJ-MY, and QLD-AU (12.8-21.6-fold, moderate performance), BP-MY, and KL-MY (48.2-49-fold, poor performance), CH-MY (128.2-fold, very poor performance). On the other hand, Tandem displayed high performance against all C. hemipterus strains (1.8-8.3-fold). Tandem caused faster mortality than Temprid SC for all strains. Temprid SC and Tandem residues killed C. hemipterus significantly faster on glass than filter paper. Compared with fresh residues, the efficacy of Temprid SC residues significantly declined after one week of aging, while the effectiveness of Tandem residues declined after two weeks of aging. Further investigations using the topical assay method with a diagnostic dose of imidacloprid found two strains (CH-MY and GL-MY) resistant to imidacloprid. The six other strains (BM-MY, BP-MY, KL-MY, SAJ-MY, TT-MY, and QLD-AU) were susceptible.

Keywords: beta-cyfluthrin; imidacloprid; insecticide formulation performance; lambda-cyhalothrin; thiamethoxam.

MeSH terms

  • Animals
  • Bedbugs*
  • Insecticide Resistance
  • Insecticides* / pharmacology
  • Neonicotinoids / pharmacology
  • Pyrethrins* / pharmacology


  • imidacloprid
  • Insecticides
  • Pyrethrins
  • Neonicotinoids