Proteomic and Morphological Profiling of Mice Ocular Tissue During High-altitude Acclimatization Process: An Animal Study at Lhasa

J Inflamm Res. 2022 May 4:15:2835-2853. doi: 10.2147/JIR.S361174. eCollection 2022.

Abstract

Purpose: High-altitude environment mainly with hypobaric hypoxia could induce pathological alterations in ocular tissue. Previous studies have mostly focused on sporadic case reports and simulated high-altitude hypoxia experiments. This aim of this study was to explore the proteomic and morphological changes of ocular tissue in mice at real altitude environment.

Methods: In this study, mice were flown from Chengdu (elevation: 500 m) to Lhasa (elevation: 3600 m). After exposure for 1day, 3, 6, 10, 20, 30, and 40days, the mice were euthanatized to obtain blood and ocular tissue. Serological tests, ocular pathological examinations, integral ocular proteomics analysis, and Western blot were conducted.

Results: We focused on acute phase (1-3 days) and chronic phase (>30 days) during high-altitude acclimatization. Serum interleukin-1 was increased at 3 days, while superoxide dismutase, interleukin-6, and tumor necrosis factor-α showed no statistical changes. H&E staining demonstrated that the cornea was edematous at 3 days and exhibited slower proliferation at 30 days. The choroid showed a consistently significant thickening, while there existed no noticeable changes in retinal thickness. Overall, 4073 proteins were identified, among which 71 and 119 proteins were detected to have significant difference at 3 days and 40 days when compared with the control group. Functional enrichment analysis found the differentiated proteins at 3 days exposure functionally related with response to radiation, dephosphorylation, negative regulation of cell adhesion, and erythrocyte homeostasis. Moreover, the differential profiles of the proteins at 40 days exposure exhibited changes of regulation of complement activation, regulation of protein activation cascade, regulation of humoral immune response, second-messenger-mediated signaling, regulation of leukocyte activation, and cellular iron homeostasis. Interestingly, we found the ocular proteins with lactylation modification were increased along high-altitude adaptation.

Conclusion: This is the first work reporting the ocular proteomic and morphological changes at real high-altitude environment. We expect it would deep the understanding of ocular response during altitude acclimatization.

Keywords: altitude response; choroid thickening; cornea edema; ocular proteomics analysis; post-translational modification.

Grants and funding

This work was supported by the National Nature Science Foundation of China (82001484 to P.L.), Natural Science Foundation of China (81900339 to J.H.), the Key projects in Science & Technology Department of Sichuan Province (2018JY0542 to J.H.), and the Fundamental Research Funds for the Central Universities (2682021TPY031 to J.H.).