Different Binding Modes of SARS-CoV-1 and SARS-CoV-2 Fusion Peptides to Cell Membranes: The Influence of Peptide Helix Length

J Phys Chem B. 2022 Jun 6. doi: 10.1021/acs.jpcb.2c01295. Online ahead of print.

Abstract

Although the amino acid sequences of SARS-CoV-1 and SARS-CoV-2 fusion peptides (FPs) are highly conserved, the cryo-electron microscopy structures of the SARS-CoV-1 and SARS-CoV-2 spike proteins show that the helix length of SARS-CoV-1 FP is longer than that of SARS-CoV-2 FP. In this work, we simulated the membrane-binding models of SARS-CoV-1 and SARS-CoV-2 FPs and compared the binding modes of the FPs with the POPC/POPE/cholesterol bilayer membrane. Our simulation results show that the SARS-CoV-2 FP binds to the bilayer membrane more effectively than the SARS-CoV-1 FP. It is seen that the short N-terminal helix of SARS-CoV-2 FP is more favorable to insert into the target membrane than the long N-terminal helix of SARS-CoV-1 FP. Meanwhile, the potential of mean force calculations showed that the SARS-CoV-2 FP would prefer only one binding mode (N-terminal binding), whereas the SARS-CoV-1 FP has two favorable membrane-binding modes (C-terminal and N-terminal binding modes). Moreover, in the case of SARS-CoV-1 FP binding to the target membrane, the transition between the two binding modes is relatively fast. Finally, we discovered that the membrane-binding mode would influence the helix length of SARS-CoV-1 FP, while the helix length of SARS-CoV-2 FP could be stably maintained in the membrane-bound configurations. This work suggests that the short helix might endow the FP with high membrane-anchoring strength. In particular, the membrane-penetrating residues (Phe, Ile, and Leu) of short α-helix interact with the cell membrane more strongly than those of long α-helix.