Characterization of erm(B)-carrying Campylobacter Spp. of retail chicken meat origin

J Glob Antimicrob Resist. 2022 Sep:30:173-177. doi: 10.1016/j.jgar.2022.05.029. Epub 2022 Jun 2.

Abstract

Objectives: The erm(B) gene in Campylobacter Spp., conferring resistance to macrolides, is of great concern worldwide. In this study, the prevalence of erm(B) in Campylobacter of retail chicken meat origin was investigated and the characterization of erm(B)-harboring Campylobacter isolates was analyzed.

Methods: Antimicrobial susceptibility testing was performed to determine the susceptibility of Campylobacter isolates. Whole-genome sequencing and analysis were used to characterize sequence type (ST) and genetic context of erm(B). Natural transformation was conducted to evaluate transferability of the erm(B) gene.

Results: A total of 16 (11.8%) Campylobacter isolates were obtained from 136 samples collected from retail chicken meat, amongst which five erm(B)-positive isolates were identified as Campylobacter coli belonging to ST3753 (n = 4) and ST825 (n = 1). A total of 22 Campylobacter Spp. were erm(B)-positive in GenBank database; all isolates were collected in China except for one Campylobacter jejuni isolate. Diverse STs were involved in these erm(B)-carrying isolates. Comparison analysis indicated that 11 types of genetic environment for erm(B) were identified, mostly associated with multidrug-resistance genomic islands (MDRGIs). The genetic context of erm(B) in C. coli of retail chicken meat origin showed high nucleotide sequence similarity with that of C. coli from humans.

Conclusion: This is the first report of prevalence and characterization for erm(B) in Campylobacter of retail chicken meat origin. The genetic context of erm(B) in C. coli isolates from retail chicken meat is highly homologous with that of C. coli from humans; this impies the possibility of zoonotic transmission of erm(B) in Campylobacter, which presents a threat to public health.

Keywords: Campylobacter; Macrolides resistance; erm(B).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Campylobacter coli* / genetics
  • Campylobacter* / genetics
  • Chickens
  • Humans
  • Meat
  • Microbial Sensitivity Tests