Experimental data on the characterization of hydroxyapatite produced from a novel mixture of biowastes

Data Brief. 2022 May 21:42:108305. doi: 10.1016/j.dib.2022.108305. eCollection 2022 Jun.

Abstract

The purpose of this data narrative is to report the morphological structures, functional groups, elemental composition, pH adaptability and mechanical properties of hydroxyapatite (HAp) biomaterials synthesized from a novel mixture of biowastes (bovine and catfish bones) by a simple sol-gel method assisted with sintering at 900 °C. The produced powders were homogenously mixed by the sol-gel approach at different weights (depicted by sample nomenclature) and characterized using scanning electron microscopy (SEM) equipped with electron dispersive X-ray analysis (EDX), X-ray fluorescence (XRF), Fourier Transform Infrared Spectroscopy (FT-IR), immersion in phosphate buffer saline (PBS), and mechanical measurements (hardness and fracture toughness). The SEM micrographs revealed pore interconnections in all samples. The EDX analysis revealed that the as-sintered HAp samples had Ca/P weight ratios of 2.38, 2.51, 2.86, 2.89, and 3.10 for C100, BC 75/25, BC 50/50, BC 25/75, and B100 samples, respectively. The FT-IR spectra was typical of the bands associated with hydroxyapatite (i.e., those associated with the PO4 3- , CO3 2- groups and absorbed water). The prepared biomaterials showed pH adaptability and good mechanical strength.

Keywords: Absorbed water; Mechanical strength; Microstructure; Sol-gel; pH adaptability.