The surface morphology of Platycodon grandiflorus polysaccharide and its anti-apoptotic effect by targeting autophagy

Phytomedicine. 2022 Aug:103:154212. doi: 10.1016/j.phymed.2022.154212. Epub 2022 May 27.

Abstract

Background: Fumonisin B1 is categorised as possible carcinogenic to humans which commonly contaminate maize and maize-based products worldwide, FB1, like other environmental pollutants, may activate apoptosis, autophagy, the inflammatory response and oxidative stress. Platycodon grandiflorus polysaccharide (PGPSt) is prepared from a traditional herbal medicine in Asia with tremendous pharmacological activities. However, whether PGPSt could relieve FB1-induced apoptosis has not been elucidated. The study aimed to evaluate the surface morphology of PGPSt and its protective effect on fumonisin B1-induced apoptosis.

Methods: The surface morphology of PGPSt was evaluated by SEM and AFM. Expressions of proteins involved in autophagy and apoptosis were detected by western blot analysis. Western blot, transient transfection, JC-1 and Annexin V-FITC/PI staining, CCK8, Live-cell imaging and autophagy inhibitor were used to observe the effect and explore the mechanism of PGPSt on FB1-induced apoptosis of 3D4/21 cells.

Results: PGPSt had triple helix conformation, and had the characteristics of compact, polyporous and agglomerated morphology. PGPSt promoted the expression of LC3-II and Beclin1, reduced the expression of p62, and significantly activated autophagy. PGPSt inhibited the Akt/mTOR signaling pathway at 24 h. Besides, PGPSt increased the expression of Bcl-2 and decreased the expression of Cleaved Caspase-3. PGPSt-mediated autophagy was inhibited by 3-MA, accompanied by the upregulation of Caspase-3 and Cleaved Caspase-3, suggesting that enhanced autophagy inhibited apoptosis.

Conclusion: PGPSt can activate autophagy, which in turn protects FB1-induced apoptosis. Targeting autophagy may provide a new way to improve the health of humans or animals in FB1 contaminated areas.

Keywords: Anti-apoptotic effect; Platycodon grandiflorus polysaccharide; Surface morphology.

MeSH terms

  • Animals
  • Apoptosis
  • Autophagy
  • Caspase 3 / metabolism
  • Platycodon* / chemistry
  • Polysaccharides / pharmacology

Substances

  • Polysaccharides
  • Caspase 3