Prevalence of MRSA as an Infectious Agent in Sanitary Swimming Pools and Jacuzzis

J Environ Health Sci Eng. 2022 Jan 8;20(1):139-146. doi: 10.1007/s40201-021-00761-3. eCollection 2022 Jun.

Abstract

Introduction: Methicillin-resistant Staphylococcus aureus (MRSA) is considered resistant to beta-lactam antibiotic groups. Infection caused by this strain is more difficult to treat with antibiotics, and hence, it will be more dangerous. This study focused on detecting the mecA gene Staphylococcus in sanitary swimming pools and Jacuzzis in Yazd city, Iran (2019). Also, the relationship between methicillin-resistant Staphylococcus aureus (MRSA) and the water quality standards has been investigated.

Materials and methods: 60 samples were randomly collected in sterile bottles from 20 active pools and Jacuzzis. Quality parameters were analyzed by standard methods. Antibiotic resistance and the mecA gene's presence were detected by the disk diffusion and PCR method, respectively.

Results: The results of this study showed that the resistance of Staphylococcus aureus isolates was high against erythromycin (41.20%), tetracycline (35.10%), clindamycin (28.90%), and cefoxitin (25.80%). Out of 97 samples, 9 (25.80%) strains of Staphylococcus aureus were identified as MRSA, 30 samples (30.92%) showed multiple patterns of antibiotic resistance, and 9 samples (9.27%) carried the mecA gene. The results revealed that water quality has greatly impacted the mecA gene strain presence, especially microbial parameters. On the other hand, in the presence of mecA gene strains, the averages of microbial qualities were higher than standard in Jacuzzis; the latter finding was confirmed for swimming pools due to physicochemical parameters.

Conclusion: The number of reported sanitary water is increasing, and this study's results are useful examples of these findings. Therefore, a lack of careful and regular monitoring of swimming pools and Jacuzzis can lead to MSRA prevalence and outbreak sources.

Keywords: Antibiotic Resistance; Jacuzzis; MRSA; Staphylococcus aureus; Swimming pools; mecA gene.