Immune boosting by B.1.1.529 ( Omicron) depends on previous SARS-CoV-2 exposure
- PMID: 35699621
- PMCID: PMC9210451
- DOI: 10.1126/science.abq1841
Immune boosting by B.1.1.529 ( Omicron) depends on previous SARS-CoV-2 exposure
Abstract
The Omicron, or Pango lineage B.1.1.529, variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carries multiple spike mutations with high transmissibility and partial neutralizing antibody (nAb) escape. Vaccinated individuals show protection against severe disease, often attributed to primed cellular immunity. We investigated T and B cell immunity against B.1.1.529 in triple BioNTech BNT162b2 messenger RNA-vaccinated health care workers (HCWs) with different SARS-CoV-2 infection histories. B and T cell immunity against previous variants of concern was enhanced in triple-vaccinated individuals, but the magnitude of T and B cell responses against B.1.1.529 spike protein was reduced. Immune imprinting by infection with the earlier B.1.1.7 (Alpha) variant resulted in less durable binding antibody against B.1.1.529. Previously infection-naïve HCWs who became infected during the B.1.1.529 wave showed enhanced immunity against earlier variants but reduced nAb potency and T cell responses against B.1.1.529 itself. Previous Wuhan Hu-1 infection abrogated T cell recognition and any enhanced cross-reactive neutralizing immunity on infection with B.1.1.529.
Figures
Similar articles
-
Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited human sera.Science. 2022 Feb 11;375(6581):678-680. doi: 10.1126/science.abn7591. Epub 2022 Jan 18. Science. 2022. PMID: 35040667 Free PMC article.
-
mRNA-1273 and BNT162b2 mRNA vaccines have reduced neutralizing activity against the SARS-CoV-2 omicron variant.Cell Rep Med. 2022 Jan 24;3(2):100529. doi: 10.1016/j.xcrm.2022.100529. eCollection 2022 Feb 15. Cell Rep Med. 2022. PMID: 35233550 Free PMC article.
-
Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern.Nat Med. 2022 Mar;28(3):496-503. doi: 10.1038/s41591-022-01715-4. Epub 2022 Jan 28. Nat Med. 2022. PMID: 35090165
-
Neutralizing antibodies to SARS-CoV-2 Omicron variant after third mRNA vaccination in health care workers and elderly subjects.Eur J Immunol. 2022 May;52(5):816-824. doi: 10.1002/eji.202149785. Epub 2022 Mar 25. Eur J Immunol. 2022. PMID: 35312186 Free PMC article.
-
T Cell Response following Anti-COVID-19 BNT162b2 Vaccination Is Maintained against the SARS-CoV-2 Omicron B.1.1.529 Variant of Concern.Viruses. 2022 Feb 8;14(2):347. doi: 10.3390/v14020347. Viruses. 2022. PMID: 35215940 Free PMC article.
Cited by
-
Persistent SARS-CoV-2-specific immune defects in kidney transplant recipients following third mRNA vaccine doses.Am J Transplant. 2023 Mar 24:S1600-6135(23)00357-X. doi: 10.1016/j.ajt.2023.03.014. Online ahead of print. Am J Transplant. 2023. PMID: 36966905 Free PMC article.
-
Effectiveness of second booster compared to first booster and protection conferred by previous SARS-CoV-2 infection against symptomatic Omicron BA.2 and BA.4/5 in France.Vaccine. 2023 Mar 21:S0264-410X(23)00315-8. doi: 10.1016/j.vaccine.2023.03.031. Online ahead of print. Vaccine. 2023. PMID: 36964001 Free PMC article.
-
Novel intranasal vaccine targeting SARS-CoV-2 receptor binding domain to mucosal microfold cells and adjuvanted with TLR3 agonist Riboxxim™ elicits strong antibody and T-cell responses in mice.Sci Rep. 2023 Mar 21;13(1):4648. doi: 10.1038/s41598-023-31198-3. Sci Rep. 2023. PMID: 36944687 Free PMC article.
-
The impact of COVID-19 and COVID vaccination on cardiovascular outcomes.Eur Heart J Suppl. 2023 Feb 14;25(Suppl A):A42-A49. doi: 10.1093/eurheartjsupp/suac123. eCollection 2023 Feb. Eur Heart J Suppl. 2023. PMID: 36937372 Free PMC article.
-
Imprinted hybrid immunity against XBB reinfection.Lancet Infect Dis. 2023 Mar 13:S1473-3099(23)00138-X. doi: 10.1016/S1473-3099(23)00138-X. Online ahead of print. Lancet Infect Dis. 2023. PMID: 36924785 Free PMC article. No abstract available.
References
-
- Elliott P., Bodinier B., Eales O., Wang H., Haw D., Elliott J., Whitaker M., Jonnerby J., Tang D., Walters C. E., Atchison C., Diggle P. J., Page A. J., Trotter A. J., Ashby D., Barclay W., Taylor G., Ward H., Darzi A., Cooke G. S., Chadeau-Hyam M., Donnelly C. A., Rapid increase in Omicron infections in England during December 2021: REACT-1 study. Science 375, 1406–1411 (2022). 10.1126/science.abn8347 - DOI - PMC - PubMed
-
- Madhi S. A., Kwatra G., Myers J. E., Jassat W., Dhar N., Mukendi C. K., Nana A. J., Blumberg L., Welch R., Ngorima-Mabhena N., Mutevedzi P. C., Population immunity and Covid-19 severity with omicron variant in South Africa. N. Engl. J. Med. 386, 1314–1326 (2022). 10.1056/NEJMoa2119658 - DOI - PMC - PubMed
-
- Hui K. P. Y., Ho J. C. W., Cheung M. C., Ng K. C., Ching R. H. H., Lai K. L., Kam T. T., Gu H., Sit K. Y., Hsin M. K. Y., Au T. W. K., Poon L. L. M., Peiris M., Nicholls J. M., Chan M. C. W., SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature 603, 715–720 (2022). 10.1038/s41586-022-04479-6 - DOI - PubMed
MeSH terms
Substances
Supplementary concepts
Grant support
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
