Sulfuric Acid Solutions of [Pt(OH)4(H2O)2]: A Platinum Speciation Survey and Hydrated Pt(IV) Oxide Formation for Practical Use

Inorg Chem. 2022 Jun 27;61(25):9667-9684. doi: 10.1021/acs.inorgchem.2c01134. Epub 2022 Jun 14.


The systematic study of the platinum speciation in sulfuric acid solutions of platinum (IV) hydroxide {[Pt(OH)4(H2O)2], HHPA} was performed with the use of a combination of methods. Depending on the prevailing Pt form, the three regions of H2SO4 concentration were marked: (1) up to 3 M H2SO4 forms unstable solutions gradually generating the PtO2·xH2O particles; (2) 4-12 M H2SO4, where the series of mononuclear aqua-sulfato complexes ([Pt(SO4)n(H2O)6-n]4-2n, where n = 0···4) dominate; and (3) 12 M and above, where, along with [Pt(SO4)n(H2O)6-n]4-2n species, the polynuclear Pt(IV) species and complexes with a bidentate coordination mode of the sulfato ligand are formed. For the first time, the salts of the aqua-hydroxo Pt(IV) cation [Pt(OH)2(H2O)4]SO4 (triclinic and monoclinic phases) were isolated and studied with a combination of methods, including the single-crystal X-ray diffraction. The formation of PtO2·xH2O particles in sulfuric acid solutions (1-3 M) of HHPA and their spectral characteristics and morphology were studied. The deposition of PtO2·xH2O was highlighted as a convenient method to prepare various Pt-containing heterogeneous catalysts. This possibility was illustrated by the preparation of Pt/g-C3N4 catalysts, which show an excellent performance in catalytic H2 generation under visible light irradiation with a quantum efficiency up to 5% and a rate of H2 evolution up to 6.2 mol·h-1 per gram of loaded platinum.