Ultrashort Pulse Excited Tip-Enhanced Raman Spectroscopy in Molecules

Nano Lett. 2022 Jul 13;22(13):5100-5106. doi: 10.1021/acs.nanolett.2c00485. Epub 2022 Jun 15.

Abstract

Vibrational fingerprints of molecules and low-dimension materials can be traced with subnanometer resolution by performing Tip-enhanced Raman spectroscopy (TERS) in a scanning tunneling microscope (STM). Strong atomic-scale localization of light in the plasmonic nanocavity of the STM enables high spatial resolution in STM-TERS; however, the temporal resolution is so far limited. Here, we demonstrate stable TERS measurements from subphthalocyanine (SubPc) molecules excited by ∼500 fs long laser pulses in a low-temperature (LT) ultrahigh-vacuum (UHV) STM. The intensity of the TERS signal excited with ultrashort pulses scales linearly with the increasing flux of the laser pulses and exponentially with the decreasing gap-size of the plasmonic nanocavity. Furthermore, we compare the characteristic features of TERS excited with ultrashort pulses and with a continuous-wave (CW) laser. Our work lays the foundation for future experiments of time-resolved femtosecond TERS for the investigation of molecular dynamics with utmost spatial, temporal, and energy resolutions simultaneously.

Keywords: STM; Tip-enhanced Raman spectroscopy; femtosecond pulses; molecular vibrations; ultrafast Raman spectroscopy.