Structures of an active type III-A CRISPR effector complex
- PMID: 35714601
- PMCID: PMC9357104
- DOI: 10.1016/j.str.2022.05.013
Structures of an active type III-A CRISPR effector complex
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) provide many prokaryotes with an adaptive immune system against invading genetic material. Type III CRISPR systems are unique in that they can degrade both RNA and DNA. In response to invading nucleic acids, they produce cyclic oligoadenylates that act as secondary messengers, activating cellular nucleases that aid in the immune response. Here, we present seven single-particle cryo-EM structures of the type III-A Staphylococcus epidermidis CRISPR effector complex. The structures reveal the intact S. epidermidis effector complex in an apo, ATP-bound, cognate target RNA-bound, and non-cognate target RNA-bound states and illustrate how the effector complex binds and presents crRNA. The complexes bound to target RNA capture the type III-A effector complex in a post-RNA cleavage state. The ATP-bound structures give details about how ATP binds to Cas10 to facilitate cyclic oligoadenylate production.
Keywords: CRISPR; complex with ATP; complex with target RNA; crRNA; cryo-EM; structure; type III-A.
Copyright © 2022 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
Figures
Similar articles
-
Regulation of cyclic oligoadenylate synthesis by the Staphylococcus epidermidis Cas10-Csm complex.RNA. 2019 Aug;25(8):948-962. doi: 10.1261/rna.070417.119. Epub 2019 May 10. RNA. 2019. PMID: 31076459 Free PMC article.
-
Structural organization of a Type III-A CRISPR effector subcomplex determined by X-ray crystallography and cryo-EM.Nucleic Acids Res. 2019 Apr 23;47(7):3765-3783. doi: 10.1093/nar/gkz079. Nucleic Acids Res. 2019. PMID: 30759237 Free PMC article.
-
Crystal Structures of Csm2 and Csm3 in the Type III-A CRISPR-Cas Effector Complex.J Mol Biol. 2019 Feb 15;431(4):748-763. doi: 10.1016/j.jmb.2019.01.009. Epub 2019 Jan 11. J Mol Biol. 2019. PMID: 30639408
-
Type III CRISPR-Cas Immunity: Major Differences Brushed Aside.Trends Microbiol. 2017 Jan;25(1):49-61. doi: 10.1016/j.tim.2016.09.012. Epub 2016 Oct 20. Trends Microbiol. 2017. PMID: 27773522 Review.
-
Electron microscopy studies of Type III CRISPR machines in Sulfolobus solfataricus.Biochem Soc Trans. 2013 Dec;41(6):1427-30. doi: 10.1042/BST20130166. Biochem Soc Trans. 2013. PMID: 24256232 Review.
Cited by
-
Critical roles for 'housekeeping' nucleases in type III CRISPR-Cas immunity.Elife. 2022 Dec 8;11:e81897. doi: 10.7554/eLife.81897. Elife. 2022. PMID: 36479971 Free PMC article.
-
Structure of the Saccharolobus solfataricus type III-D CRISPR effector.Curr Res Struct Biol. 2023 Feb 10;5:100098. doi: 10.1016/j.crstbi.2023.100098. eCollection 2023. Curr Res Struct Biol. 2023. PMID: 36843655 Free PMC article.
-
The structure of a Type III-A CRISPR-Cas effector complex reveals conserved and idiosyncratic contacts to target RNA and crRNA among Type III-A systems.PLoS One. 2023 Jun 23;18(6):e0287461. doi: 10.1371/journal.pone.0287461. eCollection 2023. PLoS One. 2023. PMID: 37352230 Free PMC article.
References
-
- An Y, Park KH, Lee M, Kim TJ, and Woo EJ (2020). Crystal structure of the Csm5 subunit of the type III-A CRISPR-Cas system. Biochem Biophys Res Commun 523, 112–116. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
