Kalium channelrhodopsins are natural light-gated potassium channels that mediate optogenetic inhibition

Nat Neurosci. 2022 Jul;25(7):967-974. doi: 10.1038/s41593-022-01094-6. Epub 2022 Jun 20.

Abstract

Channelrhodopsins are used widely for optical control of neurons, in which they generate photoinduced proton, sodium or chloride influx. Potassium (K+) is central to neuron electrophysiology, yet no natural K+-selective light-gated channel has been identified. Here, we report kalium channelrhodopsins (KCRs) from Hyphochytrium catenoides. Previously known gated potassium channels are mainly ligand- or voltage-gated and share a conserved K+-selectivity filter. KCRs differ in that they are light-gated and have independently evolved an alternative K+ selectivity mechanism. The KCRs are potent, highly selective of K+ over Na+, and open in less than 1 ms following photoactivation. The permeability ratio PK/PNa of 23 makes H. catenoides KCR1 (HcKCR1) a powerful hyperpolarizing tool to suppress excitable cell firing upon illumination, demonstrated here in mouse cortical neurons. HcKCR1 enables optogenetic control of K+ gradients, which is promising for the study and potential treatment of potassium channelopathies such as epilepsy, Parkinson's disease and long-QT syndrome and other cardiac arrhythmias.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Channelrhodopsins / genetics
  • Ion Channel Gating / physiology
  • Mice
  • Optogenetics
  • Potassium / metabolism
  • Potassium Channels* / genetics
  • Potassium Channels, Voltage-Gated*
  • Sodium / metabolism

Substances

  • Channelrhodopsins
  • Potassium Channels
  • Potassium Channels, Voltage-Gated
  • Sodium
  • Potassium