N-acetyl cysteine as a potential regulator of SARS-CoV-2-induced male reproductive disruptions

Middle East Fertil Soc J. 2022;27(1):14. doi: 10.1186/s43043-022-00104-8. Epub 2022 Jun 15.

Abstract

Background: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), has shown its persistent pandemic strength. This viral infectivity, kinetics, and the mechanisms of its actions in human body are still not completely understood. In addition, the infectivity and COVID-19 severity reportedly differ with patient's gender with men being more susceptible to the disease. Thus, different studies have also suggested the adverse impact of COVID-19 on male reproductive functions, mainly emphasizing on high expressions of angiotensin-converting enzyme 2 (ACE2) in the testes that allows the viral entry into the cells.

Main body: The N-acetylcysteine (NAC), a potent therapeutic agent of COVID-19, may be effective in reducing the impairing impacts of this disease on male reproductive functions. NAC acts as mucolytic agent by reducing sulfide bonds in the cross-linked glycoprotein matrix in mucus owing to its free sulfhydryl group. Since NAC also breaks the viral disulfide bonds required for the host cell invasion, it may help to prevent direct SARS-CoV-2 invasion into the testicular cells as well. NAC also acts as a potent anti-inflammatory and antioxidant, directly scavenging reactive oxygen species (ROS) and regulating the redox state by maintaining the thiol pool being a precursor of cysteine (an essential substrate for glutathione synthesis). Since it is suggested that male reproductive impairment in COVID-19 patient may be caused by secondary immune responses owing to systemic inflammation and OS, the anti-inflammatory and antioxidant properties of NAC explained above may attribute in protecting the male reproduction functions from these COVID-19-mediated damages.

Conclusion: This article explains the mechanisms how NAC treatment for COVID-19 may prevent the infection-mediated disruptions in male reproduction.

Keywords: COVID-19; Male infertility; N-acetyl cysteine; SARS-CoV-2.

Publication types

  • Review