A broadly neutralizing antibody protects Syrian hamsters against SARS-CoV-2 Omicron challenge

Nat Commun. 2022 Jun 23;13(1):3589. doi: 10.1038/s41467-022-31259-7.


The strikingly high transmissibility and antibody evasion of SARS-CoV-2 Omicron variants have posed great challenges to the efficacy of current vaccines and antibody immunotherapy. Here, we screen 34 BNT162b2-vaccinees and isolate a public broadly neutralizing antibody ZCB11 derived from the IGHV1-58 family. ZCB11 targets viral receptor-binding domain specifically and neutralizes all SARS-CoV-2 variants of concern, especially with great potency against authentic Omicron and Delta variants. Pseudovirus-based mapping of 57 naturally occurred spike mutations or deletions reveals that S371L results in 11-fold neutralization resistance, but it is rescued by compensating mutations in Omicron variants. Cryo-EM analysis demonstrates that ZCB11 heavy chain predominantly interacts with Omicron spike trimer with receptor-binding domain in up conformation blocking ACE2 binding. In addition, prophylactic or therapeutic ZCB11 administration protects lung infection against Omicron viral challenge in golden Syrian hamsters. These results suggest that vaccine-induced ZCB11 is a promising broadly neutralizing antibody for biomedical interventions against pandemic SARS-CoV-2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Viral* / immunology
  • BNT162 Vaccine
  • Broadly Neutralizing Antibodies* / immunology
  • COVID-19* / prevention & control
  • Cricetinae
  • Humans
  • Mesocricetus
  • SARS-CoV-2 / genetics
  • Spike Glycoprotein, Coronavirus / genetics


  • Antibodies, Viral
  • Broadly Neutralizing Antibodies
  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2
  • BNT162 Vaccine

Supplementary concepts

  • SARS-CoV-2 variants