Automated Movement Analysis to Predict Cerebral Palsy in Very Preterm Infants: An Ambispective Cohort Study

Children (Basel). 2022 Jun 7;9(6):843. doi: 10.3390/children9060843.

Abstract

The General Movements Assessment requires extensive training. As an alternative, a novel automated movement analysis was developed and validated in preterm infants. Infants < 31 weeks’ gestational age or birthweight ≤ 1500 g evaluated at 3−5 months using the general movements assessment were included in this ambispective cohort study. The C-statistic, sensitivity, specificity, positive predictive value, and negative predictive value were calculated for a predictive model. A total of 252 participants were included. The median gestational age and birthweight were 274/7 weeks (range 256/7−292/7 weeks) and 960 g (range 769−1215 g), respectively. There were 29 cases of cerebral palsy (11.5%) at 18−24 months, the majority of which (n = 22) were from the retrospective cohort. Mean velocity in the vertical direction, median, standard deviation, and minimum quantity of motion constituted the multivariable model used to predict cerebral palsy. Sensitivity, specificity, positive, and negative predictive values were 55%, 80%, 26%, and 93%, respectively. C-statistic indicated good fit (C = 0.74). A cluster of four variables describing quantity of motion and variability of motion was able to predict cerebral palsy with high specificity and negative predictive value. This technology may be useful for screening purposes in very preterm infants; although, the technology likely requires further validation in preterm and high-risk term populations.

Keywords: cerebral palsy; computer vision; early detection; early intervention; general movements assessment; machine learning; neonatal follow-up; preterm infant.