Utilization of Recombinant Baculovirus Expression System to Produce the RBD Domain of SARS-CoV-2 Spike Protein

Pathogens. 2022 Jun 10;11(6):672. doi: 10.3390/pathogens11060672.

Abstract

Continuous outbreaks of viral diseases in humans facilitates a need for the rapid development of viral test kits and vaccines. These require expression systems to produce a pure and high yield of target viral proteins. We utilized a baculovirus-silkworm expression system to produce the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. First, we had to develop a strategy for constructing a recombinant baculovirus for RBD expression. For this, the coding region of the Bombyx mori cypovirus (BmCPV) polyhedron was assembled with the Bombyx mori nuclear polyhedrosis virus (BmNPV) promoter. We demonstrated that the recombinant baculovirus has the ability to form polyhedrons within host silkworm cells. In addition, the encapsulated BVs are able to infect silkworms by ingestion and induce foreign protein expression. In this way, we utilized this novel system to obtain a high yield of the target foreign protein, the RBD of the SARS-CoV-2 S protein. However, the viral infection rate of our recombinant BV needs to be improved. Our study shed light on developing a highly efficient expression system for the production of antigens and subsequent immunoassays and vaccines.

Keywords: BmCPV; BmNPV; COVID-19 spike protein; RBD; baculovirus.