Objective: MR imaging of joints, particularly shoulder, requires a high degree of spatial resolution to ascertain anatomy and pathology. Unfortunately, motion artifacts can reduce the clinical quality of the examinations. BLADE sequence reduces motion degradation improving overall diagnostic imaging quality. The objective was to compare standard, rectilinear k-space coverage turbo spin echo (TSE), and BLADE sequences.
Material and methods: Over a 4-month period, fifty-seven consecutive patients (22 males, 35 females; mean age: 48.5 years, range: 23-64 years) were scanned using traditional intermediate-weighted spin echo and BLADE sequences. Qualitative evaluation was performed by three musculoskeletal fellowship trained radiologists, each with more than 5 years of experience. Image sequences were evaluated using a Likert scale for each of the following five categories: motion degradation, ghosting/phase misregistration artifacts, star/radial encoding artifacts, fat suppression quality, and overall diagnostic quality. Additionally, image sequences were evaluated for signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) using manually drawn regions of interest (ROI) analysis.
Results: Ghosting and phase artifacts were lower within BLADE sequence while streak artifacts were higher (p < 0.001). Image fat suppression, tendon and labral appearances, and the overall SNR and CNR were comparable on both sequences (p > 0.05).
Conclusion: Addition of BLADE reduces motion degradation and improves overall diagnostic imaging quality. Application of BLADE in patient scans suspected of motion artifacts can reduce the frequency of repeat imaging in patients with claustrophobia or those where motion is a concern. By reducing overall imaging time and call backs, it could reduce the cost burden to patients and healthcare system.
Keywords: Artifacts; Blade technique; Motion reduction; Propeller technique; Shoulder MRI.
© 2022. The Author(s), under exclusive licence to International Skeletal Society (ISS).