Exosomes from human adipose-derived mesenchymal stromal/stem cells accelerate angiogenesis in wound healing: implication of the EGR-1/lncRNA-SENCR/DKC1/VEGF-A axis

Hum Cell. 2022 Jun 25. doi: 10.1007/s13577-022-00732-2. Online ahead of print.

Abstract

Exosomes (Exos) extracted from human adipose mesenchymal stromal/stem cells (hAD-MSCs) have been reported as therapeutic tools for tissue repair, but how they regulate angiogenesis of endothelial cells remains unknown. In this study, hAD-MSCs were isolated, and early growth response factor-1, Smooth muscle and endothelial cell enriched migration/differentiation-associated long-noncoding RNA (lncRNA-SENCR), and vascular endothelial growth factor-A (VEGF-A) overexpression or knockdown was achieved. Exos extracted from hAD-MSCs (hADSC-Exos) were co-cultured with human umbilical vein endothelial cells (HUVECs) to detect the effects of EGR-1, lncRNA-SENCR, and VEGF-A on angiogenesis and the relationships between EGR-1, lncRNA-SENCR, Dyskerin pseudouridine synthase 1 (DKC1), and VEGF-A. An in vivo experiment verified the effect of hADSC-Exos on the wound healing process. hADSC-Exos substantially promoted the proliferation, migration, and angiogenesis of HUVECs, which could be reversed by short-hairpin RNA SENCR (shSENCR) transfection. hADSC-Exos had elevated expression of EGR-1, which bound to the lncRNA-SENCR promoter. The suppressive effect of Exo-shEGR1 on HUVECs was counteracted by SENCR overexpression. LncRNA-SENCR was shown to interact with DKC1. Overexpression of DKC1 or lncRNA-SENCR maintained stable VEGF-A expression. Overexpression of VEGF-A reversed the suppressive effect of shSENCR on HUVECs. Consistent results were obtained in mice in vivo. Overall, hADSC-Exo EGR-1 upregulates lncRNA-SENCR expression to activate the DKC1/VEGF-A axis, facilitating the wound-healing process by increasing angiogenesis.

Keywords: Adipose tissue-derived stromal cells; DKC1/VEGF-A; EGR-1; Exosome; LncRNA-SENCR; Wound healing.