Generalized Kubelka's theory for light transmission in multilayer materials and its application for UV light penetration in filtering facepiece respirators

J Biophotonics. 2022 Oct;15(10):e202200068. doi: 10.1002/jbio.202200068. Epub 2022 Jul 23.

Abstract

The spread of SARS-CoV-2 has resulted in the shortage of filtering facepiece respirators (FFRs). As a result, the use of ultraviolet (UV) irradiation for disinfection and reuse of FFRs has been the topic of much investigation. In this article, a mathematical model is developed based on Kubelka's theory to determine light transmission in multilayer materials, such as N95 masks. Using this model, the predicted UV transmittance and absorbance of a N95 mask layers were found to be in close agreement with the experimental values. In addition, when the mask was exposed to UV equally from both surfaces, the estimated minimum UV irradiance inside the N95 mask was 14.5% of the incident irradiance, suggesting a significant degree of light penetration. The proposed model provides a simple and practical methodology for the design and use of UV decontamination equipment for FFRs and other multilayer materials.

Keywords: COVID-19; N95 masks; disinfection; ultraviolet light.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19* / prevention & control
  • Decontamination / methods
  • Equipment Reuse
  • Humans
  • SARS-CoV-2*
  • Ultraviolet Rays
  • Ventilators, Mechanical