A genotyping-in-thousands by sequencing panel to inform invasive deer management using noninvasive fecal and hair samples

Ecol Evol. 2022 Jun 10;12(6):e8993. doi: 10.1002/ece3.8993. eCollection 2022 Jul.

Abstract

Studies in ecology, evolution, and conservation often rely on noninvasive samples, making it challenging to generate large amounts of high-quality genetic data for many elusive and at-risk species. We developed and optimized a Genotyping-in-Thousands by sequencing (GT-seq) panel using noninvasive samples to inform the management of invasive Sitka black-tailed deer (Odocoileus hemionus sitkensis) in Haida Gwaii (Canada). We validated our panel using paired high-quality tissue and noninvasive fecal and hair samples to simultaneously distinguish individuals, identify sex, and reconstruct kinship among deer sampled across the archipelago, then provided a proof-of-concept application using field-collected feces on SGang Gwaay, an island of high ecological and cultural value. Genotyping success across 244 loci was high (90.3%) and comparable to that of high-quality tissue samples genotyped using restriction-site associated DNA sequencing (92.4%), while genotyping discordance between paired high-quality tissue and noninvasive samples was low (0.50%). The panel will be used to inform future invasive species operations in Haida Gwaii by providing individual and population information to inform management. More broadly, our GT-seq workflow that includes quality control analyses for targeted SNP selection and a modified protocol may be of wider utility for other studies and systems where noninvasive genetic sampling is employed.

Keywords: GT‐seq; conservation genetics; invasive species; molecular ecology; noninvasive genetic sampling; single nucleotide polymorphism.