Cylindrical Metalens for Generation and Focusing of Free-Electron Radiation

Nano Lett. 2022 Jul 27;22(14):5641-5650. doi: 10.1021/acs.nanolett.1c04556. Epub 2022 Jul 5.

Abstract

Metasurfaces constitute a powerful approach to generate and control light by engineering optical material properties at the subwavelength scale. Recently, this concept was applied to manipulate free-electron radiation phenomena, rendering versatile light sources with unique functionalities. In this Letter, we experimentally demonstrate spectral and angular control over coherent light emission by metasurfaces that interact with free-electrons under grazing incidence. Specifically, we study metalenses based on chirped metagratings that simultaneously emit and shape Smith-Purcell radiation in the visible and near-infrared spectral regime. In good agreement with theory, we observe the far-field signatures of strongly convergent and divergent cylindrical radiation wavefronts using in situ hyperspectral angle-resolved light detection in a scanning electron microscope. Furthermore, we theoretically explore simultaneous control over the polarization and wavefront of Smith-Purcell radiation via a split-ring-resonator metasurface, enabling tunable operation by spatially selective mode excitation at nanometer resolution. Our work highlights the potential of merging metasurfaces with free-electron excitations for versatile and highly tunable radiation sources in wide-ranging spectral regimes.

Keywords: Smith−Purcell radiation; cathodoluminescence; free electrons; metalens; metasurfaces; nanophotonics; wavefront shaping.