Physical and Mechanical Properties of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis

Polymers (Basel). 2022 Jun 30;14(13):2691. doi: 10.3390/polym14132691.


Newly introduced provisional crowns and fixed dental prostheses (FDP) materials should exhibit good physical and mechanical properties necessary to serve the purpose of their fabrication. The aim of this systematic literature review and meta-analysis is to evaluate the articles comparing the physical and mechanical properties of 3D-printed provisional crown and FDP resin materials with CAD/CAM (Computer-Aided Designing/Computer-Aided Manufacturing) milled and conventional provisional resins. Indexed English literature up to April 2022 was systematically searched for articles using the following electronic databases: MEDLINE-PubMed, Web of Science (core collection), Scopus, and the Cochrane library. This systematic review was structured based on the guidelines given by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The focused PICO/PECO (Participant, Intervention/exposure, Comparison, Outcome) question was: 'Do 3D-printed (P) provisional crowns and FDPs (I) have similar physical and mechanical properties (O) when compared to CAD/CAM milled and other conventionally fabricated ones (C)'. Out of eight hundred and ninety-six titles, which were recognized after a primary search, twenty-five articles were included in the qualitative analysis, and their quality analysis was performed using the modified CONSORT scale. Due to the heterogeneity of the studies, only twelve articles were included for quantitative analysis. Within the limitations of this study, it can be concluded that 3D-printed provisional crown and FDP resin materials have superior mechanical properties but inferior physical properties compared to CAD/CAM milled and other conventionally fabricated ones. Three-dimensionally printed provisional crowns and FDP materials can be used as an alternative to conventional and CAD/CAM milled long-term provisional materials.

Keywords: 3D printing; CAD/CAM; PMMA; color stability; flexural strength; fracture strength; mechanical properties; modulus of elasticity; peak stress; physical properties; provisional crowns; provisional dental resins; provisional fixed dental prosthesis; surface roughness; water absorption and solubility; wear resistance.

Publication types

  • Review

Grants and funding

This research received no external funding.