Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons

Neuron. 2022 Sep 7;110(17):2790-2801.e5. doi: 10.1016/j.neuron.2022.06.006. Epub 2022 Jul 8.

Abstract

Learning and consolidation of new motor skills require plasticity in the motor cortex and striatum, two key motor regions of the brain. However, how neurons undergo synaptic changes and become recruited during motor learning to form a memory engram remains unknown. Here, we train mice on a motor learning task and use a genetic approach to identify and manipulate behavior-relevant neurons selectively in the primary motor cortex (M1). We find that the degree of M1 engram neuron reactivation correlates with motor performance. We further demonstrate that learning-induced dendritic spine reorganization specifically occurs in these M1 engram neurons. In addition, we find that motor learning leads to an increase in the strength of M1 engram neuron outputs onto striatal spiny projection neurons (SPNs) and that these synapses form clusters along SPN dendrites. These results identify a highly specific synaptic plasticity during the formation of long-lasting motor memory traces in the corticostriatal circuit.

Keywords: corticostriatal circuit; dendritic spines; memory engram; motor learning; synaptic clustering; synaptic plasticity; two-photon imaging.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Corpus Striatum* / physiology
  • Learning / physiology
  • Mice
  • Motor Neurons
  • Neuronal Plasticity / physiology
  • Synapses* / physiology