Introduction: The diagnosis of late antibody-mediated rejection (AMR) is compromised by frequent absence of C4d in peritubular capillaries (C4dptc), termed "C4d-negative" AMR. We hypothesized that glomerular capillary C4d (C4dglom) reflected endothelial interaction with antibody and could improve immunologic classification of transplant glomerulopathy (TG).
Methods: We evaluated C4d using immunoperoxidase in 3524 consecutive, kidney transplant biopsies from a single center.
Results: C4dglom was detected in 16.5% and C4dptc in 9.9% of biopsies. C4dglom occurred in 60.3% of TG (n = 174) and was absent in normal glomeruli. Epidemiologic risk factors for C4dglom were younger, female, living-donor recipients with early AMR, prior treated rejection, and late presentation using multivariable analysis. Semiquantitative C4dglom score correlated with donor specific antibody (DSA) level, C4dptc, microvascular inflammation (MVI), Banff cg scores, renal dysfunction, and proteinuria. Principal component analysis colocalized C4dglom with histologic AMR. Multivariable analysis of TG found DSA, C4dptc, and post-transplant time associated with C4dglom. Addition of C4dglom into Banff chronic AMR schema improved its diagnostic sensitivity for TG (verified by electron microscopy [EM]) from 22.2% to 82.4% and accuracy from 59.6% to 93.9%, compared with Banff 2019 using only C4dptc. Tissue C4dglom and chronic AMR diagnosis incorporating C4dglom were associated with death-censored allograft failure in TG (P < 0.001), independent of the severity of glomerulopathy and chronic interstitial fibrosis.
Conclusion: C4dglom is a promising diagnostic biomarker of endothelial interaction with antibody which substantially improved test performance of the Banff schema to correctly classify TG by pathophysiology and prognosticate graft loss. We recommend routine C4d immunoperoxidase to minimize underdiagnosis of late AMR in TG.
Keywords: Banff schema; antibody-mediated rejection; kidney transplantation.
© 2022 International Society of Nephrology. Published by Elsevier Inc.