Probiotics, prebiotics and postbiotics for better sleep quality: a narrative review

Benef Microbes. 2022 Aug 3;13(3):169-182. doi: 10.3920/BM2021.0122. Epub 2022 Jul 11.

Abstract

There is a growing prevalence of sleep problems and insomnia worldwide, urging the development of new treatments to tackle this increase. Several studies have suggested that the gut microbiome might influence sleep quality. The gut microbiome affects the host's health via the production of metabolites and compounds with neuroactive and immunomodulatory properties, which include short-chain fatty acids, secondary bile acids and neurotransmitters. Several of these metabolites and compounds are independently known as wakefulness-promoting (serotonin, epinephrine, dopamine, orexin, histamine, acetylcholine, cortisol) or sleep-promoting (gamma-aminobutyric acid, melatonin). The primary aim of this review was to evaluate the potential of pro-, pre- and postbiotic treatments to improve sleep quality. Additionally, we aimed to evaluate whether each of the treatments could ameliorate stress and anxiety, which are known to bidirectionally correlate with sleep problems. Lastly, we provided a mechanistic explanation for our findings. A literature search was conducted using PubMed, Scopus, Web of Science, and Google Scholar to compare all human trials that met our inclusion criteria and were published before November 2021. We furthermore discussed relevant findings from animal experiments to provide a mechanistic insight. While several studies found that sleep latency, sleep length, and cortisol levels improved after pro-, pre- or postbiotic treatment, others did not show any significant improvements for sleep quality, stress, or anxiety. These discrepancies can be explained by between-study variations in study designs, study populations, treatments, type and level of distress, and sex differences. We conclude that the trials discussed provide some evidence for prebiotics, postbiotics, and traditional probiotics, such as those belonging to lactobacilli and bifidobacteria, to improve sleep quality and stress, but stronger evidence might be found in the future after implementing the methodological adjustments that are suggested in this review.

Keywords: bile acids; circadian rhythm; gut microbiome; psychobiotics; short-chain fatty acids.

Publication types

  • Review

MeSH terms

  • Animals
  • Female
  • Humans
  • Hydrocortisone
  • Male
  • Prebiotics
  • Probiotics*
  • Sleep Quality
  • Sleep Wake Disorders* / therapy

Substances

  • Prebiotics
  • Hydrocortisone