Remineralization and protection from demineralization: effects of a hydroxyapatite-containing, a fluoride-containing and a fluoride- and hydroxyapatite-free toothpaste on human enamel in vitro

Head Face Med. 2022 Jul 13;18(1):26. doi: 10.1186/s13005-022-00330-5.

Abstract

Background: The aim was to evaluate the remineralization potential as well as the extent of protection against renewed demineralization of enamel by hydroxyapatite-containing toothpaste (Karex) in comparison to fluoride-containing (Elmex) and fluoride- and hydroxyapatite-free toothpaste (Ajona) as control.

Methods: Fifty-seven enamel samples were obtained from 19 human teeth. Five demarcated surfaces were created on each tooth (S0-S4). Four of the surfaces (S1-S4) were exposed to lactic acid (pH 3) for 8 h (demineralization). S0 was left untreated as control. S1 was solely treated with acid. After demineralization, S2 was exposed to Karex for 2 min, of which 15 s were brushing. S3 was treated with Elmex and S4 with Ajona, accordingly. Then, the samples were evaluated using a scanning electron microscope and ImageJ image analysis software to determine the percentage of demineralization. Afterwards, S2-S4 were again exposed to lactic acid for 2 h, and subjected to pixel analysis another time. Data were statistically analysed using ANOVA with post-hoc Scheffé test and the Kurskal-Wallis test.

Results: The surfaces treated with Elmex showed the lowest percentage of demineralization (mean 5.01 ± 0.98%) (p < 0.01). Thus, Elmex remineralized more effectively compared to Ajona (8.89 ± 1.41%) and Karex (9.85 ± 1.63%) (p < 0.01). Furthermore, Elmex showed the lowest percentage of demineralized enamel after new demineralization (median 6.29%), followed by Ajona (11.92%) and Karex (13.46%) (p < 0.001).

Conclusion: In terms of remineralization and protection against renewed demineralization, a hydroxyapatite-containing toothpaste (Karex) appears to be inferior to a fluoride-containing toothpaste (Elmex) and a fluoride- and hydroxyapatite-free toothpaste (Ajona). Hence, the recommendation to use Karex to protect against demineralization should be critically questioned.

Keywords: Fluoride; Hydroxyapatite; Remineralisation; Toothpaste.

MeSH terms

  • Dental Enamel
  • Durapatite / pharmacology
  • Fluorides / pharmacology
  • Hardness
  • Humans
  • Lactic Acid / pharmacology
  • Tooth Demineralization* / prevention & control
  • Tooth Remineralization / methods
  • Toothpastes* / pharmacology

Substances

  • Toothpastes
  • Lactic Acid
  • Durapatite
  • Fluorides