A simplified strategy to assess the cytotoxicity of new psychoactive substances in HepG2 cells using a high content screening assay - Exemplified for nine compounds

Toxicology. 2022 Jun 30:476:153258. doi: 10.1016/j.tox.2022.153258. Epub 2022 Jul 13.

Abstract

New psychoactive substances (NPS) are an issue of global concern posing a serious threat to the healthcare systems. Consumption of some NPS has been associated with toxic effects on the liver amongst others. However, data concerning their (cyto-)toxicity are usually not available. For a straightforward assessment of their cytotoxic potential, a simplified strategy measuring six different cytotoxicity indicating parameters simultaneously by a high content screening assay (HCSA) was developed. Its applicability was further investigated using nine NPS from heterogeneous chemical classes. HepG2 cells were incubated with NPS for 48 h at a low and high concentration (7.81 and 125 µM), respectively. To study metabolism-mediated effects on their cytotoxicity, cells were additionally incubated with the unspecific cytochrome (CYP) P450 inhibitor 1-aminobenzotriazole. Four fluorescence dyes were used to monitor cell count, nuclear size, and nuclear intensity (all Hoechst33342), mitochondrial membrane potential (TMRM), cytoplasmic calcium levels (CAL-520), and plasma membrane integrity (TOTO-3). Amongst the investigated NPS, ephylone, CUMYL-CBMICA, and dibutylone showed a strong cytotoxic potential, affecting two parameters at 7.81 µM. 5-MeO-MiPT showed moderate effects by impairing one parameter at 7.81 and one at 125 µM. Furthermore, at the high concentration of 5-MeO-MiPT, an effect of metabolism on cytotoxicity was observed. The HCSA confirmed the cytotoxic potential of ephylone and 5-MeO-MiPT, as the investigated concentrations were in the range of their published blood concentrations which induced liver damages after intake. The mitochondrial membrane potential was the parameter with the highest sensitivity and thus considered as suitable "cytobiomarker". In turn, parameters showing a high variability or unexpected effects such as cytosolic calcium levels and plasma membrane integrity might be omitted in the future. Even though 5-MeO-MiPT showed metabolism-based effects, HepG2 are known to have limited metabolic activity compared to cell lines such as HepaRG. Therefore, in further experiments cell lines with higher CYP-expression needs to be included and findings compared. Nevertheless, the simplified HCSA-based strategy allowed to screen NPS from diverse chemical groups for a first assessment of the cytotoxic properties of the parent compound. This information is crucial for a thorough risk assessment of NPS not only for public health authorities.

Keywords: Cytotoxicity; HepG2; High-content screening assay; Imaging; Metabolism-based effects; New psychoactive substances.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biological Assay*
  • Calcium* / metabolism
  • Hep G2 Cells
  • Humans
  • Liver / metabolism
  • Microsomes, Liver / metabolism

Substances

  • Calcium