The continuous adaptation of networks like our vasculature ensures optimal network performance when challenged with changing loads. Here, we show that adaptation dynamics allow a network to memorize the position of an applied load within its network morphology. We identify that the irreversible dynamics of vanishing network links encode memory. Our analytical theory successfully predicts the role of all system parameters during memory formation, including parameter values which prevent memory formation. We thus provide analytical insight on the theory of memory formation in disordered systems.