Nanoemulsion supported microemulsion electrokinetic chromatography coupled with selected preconcentration techniques as an approach for analysis of highly hydrophobic compounds

J Chromatogr A. 2022 Aug 16:1677:463339. doi: 10.1016/j.chroma.2022.463339. Epub 2022 Jul 14.

Abstract

In this paper, an oil-in-water (O/W) nanoemulsion (NE) prepared by water cold dilution of an O/W microemulsion (ME) was introduced as a sample matrix in microemulsion electrokinetic capillary chromatography (MEEKC) for the highly hydrophobic compounds analysis. Several model compounds with log PO/W values in the 4.1-10.9 range, from different chemical groups, including retinol, α-tocopherol, cholecalciferol, phylloquinone, menaquinone-7, dichlorodiphenyltrichloroethane, ivermectin have been tested. As a proof of the concept of NE formation, a dynamic light scattering technique was employed to determine the size distribution profile of NE particles. Moreover, due to relatively low conductivity of the NE matrix (50-100 times lower in comparison to the separation buffer) and a negative electric charge provided to hydrophobic compounds through NE dispersed phase, NE matrices have been combined with preconcentration techniques based on electrokinetic dosing, namely field amplified sample injection (FASI) and pressure assisted electrokinetic injection (PAEKI). The detection limits for vitamin K1 and K2-MK7 in the NE matrix in combination with FASI (NE-MEEKC-FASI) as well as PAEKI (NE-MEEKC-PAEKI) were up to 42.9 and 12.1 ng mL-1, respectively. In comparison to standard hydrodynamic injection for microemulsion sample matrix NE-MEEKC-PAEKI grant 45-fold improvement in signal sensitivity. The study presents an innovative approach, as it enables the use of preconcentration techniques for highly hydrophobic compounds (log PO/W > 4), which was not previously possible for implementation in the electromigration techniques. Likewise, the use of organic solvents has been reduced by using ME as a solvent for stock solutions and diluting with water prior to the analysis. The application to real samples was investigated using a dietary supplement containing vitamin K2-MK7 obtained from the fermentation product of soybeans.

Keywords: Hydrophobic compounds; Low-energy emulsification; Microemulsion electrokinetic chromatography; Nanoemulsion; On-line preconcentration techniques.

MeSH terms

  • Chromatography, Micellar Electrokinetic Capillary* / methods
  • Emulsions / chemistry
  • Hydrophobic and Hydrophilic Interactions
  • Solvents
  • Vitamin K
  • Water / chemistry

Substances

  • Emulsions
  • Solvents
  • Water
  • Vitamin K