High-Level Quantum Chemistry Reference Heats of Formation for a Large Set of C, H, N, and O Species in the NIST Chemistry Webbook and the Identification and Validation of Reliable Protocols for Their Rapid Computation

J Phys Chem A. 2022 Aug 4;126(30):4981-4990. doi: 10.1021/acs.jpca.2c03846. Epub 2022 Jul 25.

Abstract

A recent study has examined the accuracy of NIST heats of formation for a set of C, H, and O-containing species with a proposed low-cost quantum chemistry approach. In the present study, we have used high-level methods such as W1X-2 to obtain these data more rigorously, which we have then used to assess the NIST and the previously computed values. We find that many of these NIST data that are as suggested to be unreliable by the previous study are indeed inconsistent with our high-level reference values. However, we also find substantial deviations for the previously computed values from our benchmark. Thus, we have assessed the performance of alternative low-cost methods. In our assessment, we have additionally examined C, H, N, and O-containing species for which heats of formation are available from the NIST database. We find the ωB97M-V/ma-def2-TZVP, DSD-PBEP86/ma-def2-TZVP, and CCSD(T)-F12b/aug'-cc-pVDZ methods to be adequate for obtaining heats of formation with the atomization approach, once their atomic energies are optimized with our benchmark. Notably, the low-cost ωB97M-V method yields values that agree to be within 10 kJ mol-1 for more than 90% of the (∼1500) species. A higher 20 kJ mol-1 threshold captures 98% of the data. The outlier species typically contain many electron-withdrawing (nitro) groups. In these cases, the use of isodesmic-type reactions rather than the atomization approach is more reliable. Our assessment has also identified significant outliers from the NIST database, for which experimental re-determination of the heats of formation would be desirable.