Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells
- PMID: 35881789
- PMCID: PMC9351496
- DOI: 10.1073/pnas.2200667119
Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells
Abstract
Liquid-liquid phase separation (LLPS) is emerging as a key physical principle for biological organization inside living cells, forming condensates that play important regulatory roles. Inside living nuclei, transcription factor (TF) condensates regulate transcriptional initiation and amplify the transcriptional output of expressed genes. However, the biophysical parameters controlling TF condensation are still poorly understood. Here we applied a battery of single-molecule imaging, theory, and simulations to investigate the physical properties of TF condensates of the progesterone receptor (PR) in living cells. Analysis of individual PR trajectories at different ligand concentrations showed marked signatures of a ligand-tunable LLPS process. Using a machine learning architecture, we found that receptor diffusion within condensates follows fractional Brownian motion resulting from viscoelastic interactions with chromatin. Interestingly, condensate growth dynamics at shorter times is dominated by Brownian motion coalescence (BMC), followed by a growth plateau at longer timescales that result in nanoscale condensate sizes. To rationalize these observations, we extended on the BMC model by including the stochastic unbinding of particles within condensates. Our model reproduced the BMC behavior together with finite condensate sizes at the steady state, fully recapitulating our experimental data. Overall, our results are consistent with condensate growth dynamics being regulated by the escaping probability of PR molecules from condensates. The interplay between condensation assembly and molecular escaping maintains an optimum physical condensate size. Such phenomena must have implications for the biophysical regulation of other nuclear condensates and could also operate in multiple biological scenarios.
Keywords: Brownian motion coalescence; biomolecular condensates; liquid–liquid phase separation; single particle tracking; transcription factor.
Conflict of interest statement
The authors declare no competing interest.
Figures
Similar articles
-
Single-Molecule Measurement of Protein Interaction Dynamics within Biomolecular Condensates.J Vis Exp. 2024 Jan 5;(203). doi: 10.3791/66169. J Vis Exp. 2024. PMID: 38251748
-
Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression.J Mol Biol. 2022 Jan 15;434(1):167151. doi: 10.1016/j.jmb.2021.167151. Epub 2021 Jul 14. J Mol Biol. 2022. PMID: 34271007 Free PMC article. Review.
-
Higher-order organization of biomolecular condensates.Open Biol. 2021 Jun;11(6):210137. doi: 10.1098/rsob.210137. Epub 2021 Jun 16. Open Biol. 2021. PMID: 34129784 Free PMC article. Review.
-
Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates.J Mol Biol. 2022 Jan 15;434(1):167348. doi: 10.1016/j.jmb.2021.167348. Epub 2021 Nov 9. J Mol Biol. 2022. PMID: 34767801 Free PMC article. Review.
-
Interplay of condensate material properties and chromatin heterogeneity governs nuclear condensate ripening.bioRxiv [Preprint]. 2024 Aug 21:2024.05.07.593010. doi: 10.1101/2024.05.07.593010. bioRxiv. 2024. PMID: 38766065 Free PMC article. Preprint.
Cited by
-
Protein condensates in the the secretory pathway: Unraveling biophysical interactions and function.Biophys J. 2024 Jun 18;123(12):1531-1541. doi: 10.1016/j.bpj.2024.04.031. Epub 2024 May 2. Biophys J. 2024. PMID: 38698644 Review.
-
Using Single Molecule Imaging to Explore Intracellular Heterogeneity.ArXiv [Preprint]. 2023 Aug 2:arXiv:2308.01431v1. ArXiv. 2023. Update in: Int J Biochem Cell Biol. 2023 Oct;163:106455. doi: 10.1016/j.biocel.2023.106455 PMID: 37576125 Free PMC article. Updated. Preprint.
-
Inferring pointwise diffusion properties of single trajectories with deep learning.Biophys J. 2023 Nov 21;122(22):4360-4369. doi: 10.1016/j.bpj.2023.10.015. Epub 2023 Oct 17. Biophys J. 2023. PMID: 37853693 Free PMC article.
-
Memory effects of transcription regulator-DNA interactions in bacteria.Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2407647121. doi: 10.1073/pnas.2407647121. Epub 2024 Oct 3. Proc Natl Acad Sci U S A. 2024. PMID: 39361642
-
Early Steps of Individual Multireceptor Viral Interactions Dissected by High-Density, Multicolor Quantum Dot Mapping in Living Cells.ACS Nano. 2024 Oct 22;18(42):28881-28893. doi: 10.1021/acsnano.4c09085. Epub 2024 Oct 10. ACS Nano. 2024. PMID: 39387532 Free PMC article.
References
-
- Brangwynne C. P., et al. , Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009). - PubMed
-
- Hyman A. A., Weber C. A., Jülicher F., Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014). - PubMed
-
- Shin Y., Brangwynne C. P., Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
