Reconstructed Human Epidermis: An Alternative Approach for In Vitro Bioequivalence Testing of Topical Products

Pharmaceutics. 2022 Jul 26;14(8):1554. doi: 10.3390/pharmaceutics14081554.


The use of in vitro human skin permeation tests is of value when addressing the quality and equivalence of topical drug products in Europe and the US. Human skin is the membrane of choice for these studies. The use of human skin as a membrane is hindered by limited access, high variability of results, and limited applicability for drugs with low skin permeability. Reconstructed human epidermis (RhE) models are validated as skin surrogates for safety tests and have been explored for percutaneous absorption testing. Clotrimazole poorly permeates human skin and is widely available for topical treatments. In this study, clotrimazole creams were used to test the ability of RhE to be used as biological membrane for bioequivalence testing, based on the Draft Guideline on Quality and Equivalence of Topical Products (CHMP/QWP/708282/2018) using a discriminative and modified in vitro permeation test (IVPT). To fulfill the validation of a discriminatory method, Canesten® 10 mg/g cream was compared with a test product with the same drug strength, along with two "negative controls" dosed at a 50% and 200% drug strength. Products were compared in finite dose conditions, regarding maximal flux (Jmax) and the total amount of drug permeated (Atotal). The results showed the discriminatory power of the method among the three drug strengths with no interference of the placebo formulation. The study design and validation complied with the requirements established in the guideline for a valid IVPT. This new test system allowed for the equivalence comparison between test and comparator product. Higher permeability of the RhE compared to human skin could be observed. This arose as a strength of the model for this modified IVPT bioequivalence testing, since comparing permeation profiles among products is envisaged instead of drawing absolute conclusions on skin permeation extent. These results may support the acceptance of RhE as biological membranes for modified IVPT in bioequivalence testing of topical products.

Keywords: bioequivalence in vitro; human skin; permeation tests; reconstructed human epidermis; topical products.

Grant support

This project was supported by Labfit-HPRD Lda, Laboratórios Basi, and EPISKIN. Further support was obtained within the scope of the CICS-UBI projects UIDB/00709/2020 and UIDP/00709/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES.