High-speed and high-contrast two-channel all-optical modulator based on solution-processed CdSe/ZnS quantum dots

Sci Rep. 2022 Jul 27;12(1):12778. doi: 10.1038/s41598-022-17084-4.

Abstract

Recently, all-optical modulators are potentially the most promising candidate to achieve high-bit rate modulation in high-speed all-optical communication technologies and signal processing. In this study, a two-channel all-optical modulator based on a solution-processed quantum dot structure is introduced for two sizes of quantum dots to operate at two wavelengths of MIR spectra (3 µm and 5 µm). To perform numerical and theoretical analysis and evaluate the optical behavior of the proposed all-optical modulator, the coupled rate and propagation equations have been solved by considering homogeneous and inhomogeneous broadening effects. The modulation depth at the 50 GHz frequency and 3 mW probe power is attained, about 94% for channel-1 with the wavelength of 559 nm at 300 Wcm-2 pump power density as well as approximately 83.5% for channel-2 with the wavelength of 619 nm at 500 Wcm-2 pump power density. The introduced two-channel all-optical modulator can operate simultaneously at two wavelengths during the modulation process in which information could be transmitted through both signals from the control light. This approach can present the practical device as a high-contrast and high-speed two-channel all-optical modulator with a high modulation depth in numerous applications such as thermal imaging in night vision cameras, wavelength de-multiplexing, signal processing, free-space communication.