Functional supramolecular micelles driven by the amphiphilic complex of biotin-acyclic cucurbituril and cannabidiol for cell-targeted drug delivery

Int J Pharm. 2022 Jul 25;625:122048. doi: 10.1016/j.ijpharm.2022.122048. Online ahead of print.


Precise delivery of hydrophobic drugs has always been a great challenge for drug delivery systems. To overcome this problem, we designed and synthesized a novel supramolecular host biotin-acyclic cucurbituril (ACBB) at the first time, and we have developed a host-guest amphiphilic complex based on ACBB and amantadine-conjugated cannabinoids (AD-CBD) that self-assembles to form functionalized supramolecular micelles (FSMs) for cell-targeted drug delivery. The 1:1 stoichiometric ratio of the amphiphilic complex and its possible host-guest inclusion behaviors are obtained by fluorescence titration, nuclear magnetic resonance (NMR), Fourier transform-infrared spectroscopy (FT-IR) and thermal analysis (TGA and DSC). Using transmission electron microscope (TEM) and dynamic light scattering (DLS), we have observed that the shape of FSMs was spherical and size was 137-192 nm. In addition, MTT test results show that FSMs have good antitumor activity, taking MCF-7 as an example, the in vitro half-maximal inhibitory concentration (IC50) values of FSMs were 1.53 μM and 5.02 μM, which were better than 30.83 μM of cisplatin. Confocal laser scanning microscopy (CLSM) results showed that FSMs loaded with Rhodamine B can specifically aggregate on the surface of tumor cells and the targeting ability has been directly verified. Flow cytometry results showed that FSMs could promote tumor cell apoptosis. All results indicated that FSMs had high bioavailability, stability, accurate targeting and excellent delivery efficiency, which had great application potential in the field of drug delivery.

Keywords: Amphiphilic complex; Biotin-acyclic cucurbituril conjugate; Cannabidiol; Self-assembly; Supramolecular micelles.