Towards personalised dosimetry in patients with liver malignancy treated with 90Y-SIRT using in vivo-driven radiobiological parameters

EJNMMI Phys. 2022 Jul 30;9(1):49. doi: 10.1186/s40658-022-00479-7.

Abstract

Background: The prediction of response is one of the major challenges in radiation-based therapies. Although the selection of accurate linear-quadratic model parameters is essential for the estimation of radiation response and treatment outcome, there is a limited knowledge about these radiobiological parameters for liver tumours using radionuclide treatments.

Methods: The "clinical radiobiological" parameters ([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]) for twenty-five patients were derived using the generalised linear-quadratic model, the diagnostic ([18F] FDG PET/CT) and therapeutic ([90Y]-SIR-Spheres PET/CT) images to compute the biological effective dose and tumour control probability (TCP) for each patient.

Results: It was estimated that the values for [Formula: see text] and [Formula: see text] parameters range in ≈ 0.001-1 Gy-1 and ≈ 1-49 Gy, respectively. We have demonstrated that the time factors, [Formula: see text], [Formula: see text] and [Formula: see text] are the key parameters when evaluating liver malignancy lesional response to [90Y]SIR-Spheres treatment. Patients with cholangiocarcinoma have been shown to have the longest average [Formula: see text] (≈ 236 ± 67 d), highest TCP (≈ 53 ± 17%) and total liver lesion glycolysis response ([Formula: see text] ≈ 64%), while patients with metastatic colorectal cancer tumours have the shortest average [Formula: see text] (≈ 129 ± 19 d), lowest TCP (≈ 28 ± 13%) and [Formula: see text] ≈ 8%, respectively.

Conclusions: Tumours with shorter [Formula: see text] have shown a shorter [Formula: see text] and thus poorer TCP and [Formula: see text]. Therefore, these results suggest for such tumours the [90Y]SIR-Spheres will be only effective at higher initial dose rate (e.g. > 50 Gy/day).

Keywords: 90Y; Dose; Radioembolisation; Response; SIRT.