Follicular lymphoma: The long and winding road leading to your cure?

Blood Rev. 2023 Jan:57:100992. doi: 10.1016/j.blre.2022.100992. Epub 2022 Jul 23.

Abstract

Follicular lymphoma, the most common indolent lymphoma, though highly responsive to therapy is coupled with multiple relapses for the majority of patients. Advances in biologic understanding of molecular events in lymphoma cells and the tumor microenvironment, along with novel cellular and targeted therapies, suggest this may soon change. Here we first review the development of the molecular concepts and classification of follicular lymphoma, along with therapeutic development of treatments based on chemotherapy plus monoclonal antibodies targeting CD20. We then focus on developments over the last decade in further defining follicular lymphoma pathophysiology, leading to targeted therapeutics, as well as novel immunotherapeutic strategies effective against B cell lymphomas including follicular, particularly patients with advanced stage disease. Additional alterations beyond the hallmark t(14;18) translocation are necessary for development of follicular lymphoma. Epigenetic mutations are almost universally identified in follicular lymphoma, most commonly involving histone-lysine N-methyltransferase 2D (KMT2D, the histone acetyltransferases, cAMP response element-binding protein binding protein (CREBBP) and E1A binding protein P300 (EP300) and the histone methyltransferase enhancer of zeste homologue 2 (EZH2). Mutations are also commonly identified in other proliferation/survival pathways such as B-cell receptor, RAS, mTOR and JAK-STAT pathways, as well as immune escape mutations. The host immune response plays a key role as well, based on studies correlating various immune cell subsets and gene expression signatures with outcomes. Over the last decade, many therapeutic options beyond the commonly used bendamustine-rituximab induction regimen have become available or are being investigated. We focus on these newer agents in the relapsed setting. New antibody-based agents include the naked CD19 directed antibody tafasitamab, the CD79b directed antibody drug conjugate (ADC) polatuzumab vedotin and the CD47 directed antibody magrolimab that targets macrophages rather than FL cells directly. Immune modulation by lenalidomide has moved to earlier lines of therapy and in combinations. Several small molecule inhibitors of proliferation signal pathways involving PI3kinase and BTK have activity against FL. Apoptotic pathway modulators also have activity. With increasing recognition of the high rate of epigenetic mutations in FL, HDAC inhibition has a role. More importantly, the EZH2 inhibitor tazemetostat is FDA approved for FL after 2 prior lines of therapy. The most exciting data currently involve immune attack against follicular lymphoma by chimeric antigen receptor T-cells (CART) or bispecific antibody constructs. Given these multiple potentially non-crossreactive mechanisms, studies of rationally designed combination strategies hold the promise of improving outcomes and possibly cure of follicular lymphoma.

Keywords: Antibody targeted therapy; Bispecific antibody therapy; CART therapy; Epigenetic mutations; Indolent B cell lymphoma.

Publication types

  • Review

MeSH terms

  • Antineoplastic Combined Chemotherapy Protocols / therapeutic use
  • Humans
  • Lymphoma, B-Cell*
  • Lymphoma, Follicular* / diagnosis
  • Lymphoma, Follicular* / drug therapy
  • Lymphoma, Follicular* / etiology
  • Lymphoma, Non-Hodgkin*
  • Neoplasm Recurrence, Local / drug therapy
  • Rituximab / therapeutic use
  • Tumor Microenvironment

Substances

  • Rituximab