One-Step Preparation of a Superhydrophobic Surface by Electric Discharge Machining with a Carbon Fiber Brush Electrode

Langmuir. 2022 Aug 16;38(32):9853-9862. doi: 10.1021/acs.langmuir.2c00916. Epub 2022 Aug 7.

Abstract

Superhydrophobic surfaces are extremely susceptible to damage, which can lead to a sharp decrease in their service life and physical properties. Therefore, developing methods to impart superhydrophobic surfaces with excellent wear resistance is crucial. In this article, a flexible carbon fiber brush was utilized as an electrode to fabricate micro-/nano-structures on a grooved surface via electric discharge machining in one step, resulting in a superhydrophobic coating with excellent wear resistance. Carbon fiber brushes exhibit several notable properties, including excellent flexibility, conductivity, and high temperature resistance. Carbon fiber brushes can adapt to the complex inner walls of grooves. Many nano-structures were fabricated on the grooves via pulse discharge, which resulted in a superhydrophobic surface with excellent wear resistance. The contact angle (CA) and sliding angle of the surface after discharge were 156.3 and 2°, respectively. The processed surface exhibits superior corrosion resistance compared to the stainless-steel substrate. The influence of the micro-groove shapes on wear resistance was tested. The results showed that, after 500 cm of wear, the shallow grooves retained their superhydrophobicity with a CA of 150.1°.