Photonic Z_{2} Topological Anderson Insulators

Phys Rev Lett. 2022 Jul 22;129(4):043902. doi: 10.1103/PhysRevLett.129.043902.


That disorder can induce nontrivial topology is a surprising discovery in topological physics. As a typical example, Chern topological Anderson insulators (TAIs) have been realized in photonic systems, where the topological phases exist without symmetry protection. In this Letter, by taking transverse magnetic and transverse electric polarizations as pseudospin degrees of freedom, we theoretically propose a scheme to realize disorder-induced symmetry-protected topological phase transitions in two-dimensional photonic crystals with a combined time-reversal, mirror, and duality symmetry T_{f}=TM_{z}D. In particular, we demonstrate that the disorder-induced symmetry-protected topological phase persists even without pseudospin conservation, thereby realizing a photonic Z_{2} TAI, in contrast to a Z-classified quantum spin Hall (QSH) TAI with decoupled spins. By formulating a new scattering approach, we show that the topology of both the QSH and Z_{2} TAIs can be manifested by the accumulated spin rotations of the reflected waves from the photonic crystals. Using a transmission structure, we also illustrate the trivialization of a disordered QSH phase with an even integer topological index caused by spin coupling.