The structure-specific endonuclease complex SLX4-XPF regulates Tus-Ter-induced homologous recombination

Nat Struct Mol Biol. 2022 Aug;29(8):801-812. doi: 10.1038/s41594-022-00812-9. Epub 2022 Aug 8.

Abstract

Vertebrate replication forks arrested at interstrand DNA cross-links (ICLs) engage the Fanconi anemia pathway to incise arrested forks, 'unhooking' the ICL and forming a double strand break (DSB) that is repaired by homologous recombination (HR). The FANCP product, SLX4, in complex with the XPF (also known as FANCQ or ERCC4)-ERCC1 endonuclease, mediates ICL unhooking. Whether this mechanism operates at replication fork barriers other than ICLs is unknown. Here, we study the role of mouse SLX4 in HR triggered by a site-specific chromosomal DNA-protein replication fork barrier formed by the Escherichia coli-derived Tus-Ter complex. We show that SLX4-XPF is required for Tus-Ter-induced HR but not for error-free HR induced by a replication-independent DSB. We additionally uncover a role for SLX4-XPF in DSB-induced long-tract gene conversion, an error-prone HR pathway related to break-induced replication. Notably, Slx4 and Xpf mutants that are defective for Tus-Ter-induced HR are hypersensitive to ICLs and also to the DNA-protein cross-linking agents 5-aza-2'-deoxycytidine and zebularine. Collectively, these findings show that SLX4-XPF can process DNA-protein fork barriers for HR and that the Tus-Ter system recapitulates this process.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • DNA / genetics
  • DNA Breaks, Double-Stranded
  • DNA Repair
  • DNA Replication
  • Endonucleases / genetics
  • Endonucleases / metabolism
  • Fanconi Anemia* / metabolism
  • Homologous Recombination*
  • Mice

Substances

  • DNA
  • Endonucleases