Purpose of review: ALS genetics are highly dynamic and of great interest for the ALS research community. Each year, by using ever-growing datasets and cutting-edge methodology, an array of novel ALS-associated genes and downstream pathomechanisms are discovered. The increasing plenty and complexity of insights warrants regular summary by-reviews.
Recent findings: Most recent disease gene discoveries constitute the candidate and risk genes SPTLC1 , KANK1 , CAV1 , HTT , and WDR7 , as well as seven novel risk loci. Cell type and functional enrichment analyses enlighten the genetic basis of selective motor neuron vulnerability in ALS demonstrating high expression of ALS-associated genes in cortical motor neurons and highlight the pathogenic significance of cell-autonomous processes. Major pathomechanistic insights have been gained regarding known ALS genes/proteins, specifically C9orf72 , TDP43, ANXA11 , and KIF5A . The first ASO-based gene-specific therapy trials in familial forms of ALS have yielded equivocal results stressing the re-evaluation of pathomechanisms linked to SOD1 and C9orf72 mutations.
Summary: The genetic and molecular basis of ALS is increasingly examined on single-cell resolution. In the past 2 years, the understanding of the downstream mechanisms of several ALS genes and TDP-43 proteinopathy has been considerably extended. These insights will result in novel gene specific therapy approaches for sporadic ALS and genetic subtypes.
Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.