Transcriptome analysis of breast muscle and liver in full-sibling hybrid broilers at different ages

Gene. 2022 Oct 30;842:146801. doi: 10.1016/j.gene.2022.146801. Epub 2022 Aug 9.

Abstract

In China, the production mode of hybrid broilers with meat-type chicken as male parent and egg-type chicken as female parent is common, but few studies pay attention to the economic characteristics of hybrid broilers. In this experiment, we constructed a full-sib F1 population (n = 57) from male Recursive White broiler and female Lohmann Pink layer. Total 6, 6 and 7 hybrid broilers at days 1, 28 and 56 were selected randomly to collect breast muscle and liver tissues, respectively. After performing strand-specific RNA-Seq on these samples, we obtained 252.12 Gb sequencing data. Principal component analysis presented that the effects of different factors on gene expression were as below: tissue difference > age difference > sex difference. The ten genes with the highest expression in breast muscle were GAPDH, ACTA1, ATP2B3, COII, ATP6, COX3, COX1, MYL1, TNNI2 and ENSGALG00000042024. Through the analysis of differentially expressed transcripts (DETs) between different ages, we found that the number of DETs decreased progressively with the prolongation of ages in breast muscle. The same results were also observed in liver. GO enrichment analysis of DETs demonstrated that total 11 BP terms closely related to growth and development of breast muscle were annotated, such as cardiac muscle contract, muscle contract, cell division and so on. KEGG annotation presented that total 5 pathways related to growth and development were determined in breast muscle, including Cell cycle, Insulin signaling pathway, FoxO signaling pathway, Focal adhesion and Adrenergic signaling in cardiomyocytes. Our results may provide theoretical foundation for hybrid broiler production.

Keywords: Breast muscle; Chicken; Liver; Transcriptome; ssRNA-Seq.

MeSH terms

  • Animals
  • Chickens* / genetics
  • Female
  • Gene Expression Profiling
  • Liver
  • Male
  • Pectoralis Muscles
  • Transcriptome